javaIO学习
IO学习
1 简介
Java 中的 BIO、NIO和 AIO 理解为是 Java 语言对操作系统的各种 IO 模型的封装。程序员在使用这些 API 的时候,不需要关心操作系统层面的知识,也不需要根据不同操作系统编写不同的代码。只需要使用Java的API就可以了。
1.1 IO基础知识
IO (Input/Output,输入/输出)即数据的读取(接收)或写入(发送)操作,通常用户进程中的一个完整IO分为两阶段:用户进程空间<–>内核空间、内核空间<–>设备空间(磁盘、网络等)。IO有内存IO、网络IO和磁盘IO三种,通常我们说的IO指的是后两者。
网络I/O就是通过网络进行数据的拉取和输出。
磁盘I/O主要是对磁盘进行读写工作。
比如你打开浏览器,访问腾讯首页,浏览器这个程序就需要通过网络IO获取腾讯的网页。浏览器首先会发送数据给腾讯服务器,告诉它我想要首页的HTML,这个动作是往外发数据,叫Output,腾讯服务器把网页发过来,这个动作是从外面接收数据,叫Input。所以,通常,程序完成IO操作会有Input和Output两个数据流。当然也有只用一个的情况,比如,从磁盘读取文件到内存,就只有Input操作,反过来,把数据写到磁盘文件里,就只是一个Output操作。
流是什么?可以把流想象成一个水管,数据就是水管里的水,但是只能单向流动。Input Stream就是数据从外面(磁盘、网络)流进存,Output Stream就是数据从内存流到外面去。对于浏览网页来说,浏览器和腾讯服务器之间至少需要建立两根水管,才可以既能发数据,又能收数据。
LINUX中进程无法直接操作I/O设备,其必须通过系统调用请求kernel来协助完成I/O动作;内核会为每个I/O设备维护一个缓冲区。
对于一个输入操作来说,进程IO系统调用后,内核会先看缓冲区中有没有相应的缓存数据,没有的话再到设备中读取,因为设备IO一般速度较慢,需要等待;内核缓冲区有数据则直接复制到进程空间。
所以,对于一个网络输入操作通常包括两个不同阶段:
- 等待网络数据到达网卡→读取到内核缓冲区,数据准备好;
- 从内核缓冲区复制数据到进程空间
由于CPU和内存的速度远远高于外设的速度。所以在IO编程中,就存在速度严重不匹配的问题。
1.1.1 用户空间与内核空间
内核空间是内核代码运行的地方,
用户空间是用户程序代码运行的地方。
当进程运行在内核空间时就处于内核态,当进程运行在用户空间时就处于用户态。
1.1.2 同步异步
定义
- 同步 :两个同步任务相互依赖,并且一个任务必须以依赖于另一任务的某种方式执行。 比如在
A->B
事件模型中,你需要先完成 A 才能执行B。 再换句话说,同步调用中被调用者未处理完请求之前,调用不返回,调用者会一直等待结果的返回。 - 异步: 两个异步的任务是完全独立的,一方的执行不需要等待另外一方的执行。再换句话说,异步调用中一调用就返回结果不需要等待结果返回,当结果返回的时候通过回调函数或者其他方式拿着结果再做相关事情,
另一篇文章中的定义
- 同步请求:A调用B,B的处理是同步的,在处理完之前他不会通知A,只有处理完之后才会明确的通知A。
- 异步请求:A调用B,B的处理是异步的,B在接到请求后先告诉A我已经接到请求了,然后异步去处理,处理完之后通过回调等方式再通知A。
总结
同步异步主要用于描述被调用者B的返回方式,立即返回就是异步,执行完毕返回就是同步。
同步和异步最大的区别就是被调用方的执行方式和返回时机。
同步指的是被调用方做完事情之后再返回,
异步指的是被调用方先返回,然后再做事情,做完之后再想办法通知调用方。
1.1.3 阻塞非阻塞
- 阻塞: 阻塞就是发起一个请求,调用者一直等待请求结果返回,也就是当前线程会被挂起,无法从事其他任务,只有当条件就绪才能继续。
- 非阻塞: 非阻塞就是发起一个请求,调用者不用一直等着结果返回,可以先去干其他事情。
另一篇文章中的定义
- 阻塞请求,A调用B,A一直等着B的返回,别的事情什么也不干。
- 非阻塞请求,A调用B,A不用一直等着B的返回,先去忙别的事情了。
总结
主要在被调用者返回前的时间内调用者A的行为。
阻塞和非阻塞最大的区别就是在被调用方返回结果之前的这段时间内,调用方是否一直等待。
阻塞指的是调用方一直等待,别的事情什么都不做。
非阻塞指的是调用方先去忙别的事情。
1.2 五种IO模型
1.2.1 阻塞IO模型
当用户线程发出IO请求之后,内核会去查看数据是否就绪,如果没有就绪就会等待数据就绪,而用户线程就会处于阻塞状态,用户线程交出CPU。当数据就绪之后,内核会将数据拷贝到用户线程,并返回结果给用户线程,用户线程才解除block状态。
进程发起IO系统调用后,进程被阻塞,转到内核空间处理,整个IO处理完毕后返回进程。操作成功则进程获取到数据
1.2.2 非阻塞IO模型
进程发起IO系统调用后,如果内核缓冲区没有数据,需要到IO设备中读取,进程返回一个错误而不会被阻塞;进程发起IO系统调用后,如果内核缓冲区有数据,内核就会把数据返回给进程。
对于上面的阻塞IO模型来说,内核数据没准备好需要进程阻塞的时候,就返回一个错误,以使得进程不被阻塞。
在非阻塞IO模型中,用户线程需要不断地询问内核数据是否就绪,也就说非阻塞IO不会交出CPU,而会一直占用CPU。
1.2.3 IO复用模型
多个的进程的IO可以注册到一个复用器(select)上,然后用一个进程调用该select,,select会监听所有注册进来的IO。
如果select监听的IO在内核缓冲区都没有可读数据,select调用进程会被阻塞;而当任一IO在内核缓冲区中有可数据时,select调用就会返回;而后select调用进程可以自己或通知另外的进程(注册进程)来再次发起读取IO,读取内核中准备好的数据。
典型应用: select、 poll、 epoll三种方案,nginx都可以选择使用这三个方案
select, poll和epoll
- **Select:**注册IO、阻塞扫描,监听的IO最大连接数不能多于FD_ SIZE(1024);
- **Poll:**原理和Select相似,没有数量限制,但IO数量大扫描线性性能下降;
- **Epoll :**事件驱动不阻塞, mmap实现内核与用户空间的消息传递,数量很大,Linux2.6后内核支持
例如:
1)select/poll
小明去火车站买票,委托黄牛,黄牛三天内买到票,然后打便所有人要买票人的电话找到小明,小明去火车站交钱领票。
耗费:往返车站2次,路上2小时,黄牛手续费100元,等待通知3小时
2)epoll
小明去火车站买票,委托黄牛,黄牛买到后即通知小明去领,然后小明去火车站交钱领票。
耗费:往返车站2次,路上2小时,黄牛手续费100元,无需打电话
1.2.4 信号驱动IO模型
在信号驱动IO模型中,当用户线程发起一个IO请求操作,会给对应的socket注册一个信号函数,然后用户线程会继续执行,当内核数据就绪时会发送一个信号给用户线程,用户线程接收到信号之后,便在信号函数中调用IO读写操作来进行实际的IO请求操作。这个一般用于UDP中,对TCP套接口几乎是没用的,原因是该信号产生得过于频繁,并且该信号的出现并没有告诉我们发生了什么事情。
当进程发起一个IO操作,会向内核注册一个信号处理函数,然后进程返回不阻塞;当内核数据就绪时会发送一个信号给进程,进程便在信号处理函数中调用IO读取数据
1.2.5 异步IO模型
当进程发起一个IO操作,进程返回(不阻塞),但也不能返回结果;内核把整个IO处理完后,会通知进程结果。如果IO操作成功则进程直接获取到数据。
例如:
小明去火车站买票,给售票员留下电话,有票后,售票员电话遇知小明并快递送票上门。
耗费:往返车站1次,路上1小时,免黄牛费100元,无需打电话
注意:
此模型和前面模型最大的区别是:前4个都是阻塞的,因为需要自己把用户准备好的数据,放在我的用户空间,而全异步都帮我们做好了。
用户线程完全不需要关心实际的整个IO操作是如何进行的,只需要先发起一个请求,当接收内核返回的成功信号时表示IO操作已经完成,可以直接去使用数据了。它是最理想的模型。
1.2.6 区别
同步I/O引起进程阻塞,直到I/O操作完成
异步I/O不会引起进程阻塞
阻塞式I/O, 非阻塞I/O, I/O复用由于都导致了请求进程阻塞,所以均属于同步I/O。
1 BIO 同步阻塞IO
同步阻塞I/O模式,数据的读取写入必须阻塞在一个线程内等待其完成。
1.1 传统BIO
被调用者执行完才返回(同步),调用者在返回前一直阻塞(阻塞)。
采用 BIO 通信模型 的服务端,通常由一个独立的 Acceptor 线程负责监听客户端的连接。我们一般通过在while(true)
循环中服务端会调用 accept()
方法等待接收客户端的连接的方式监听请求,请求一旦接收到一个连接请求,就可以建立通信套接字在这个通信套接字上进行读写操作,此时不能再接收其他客户端连接请求,只能等待同当前连接的客户端的操作执行完成, 不过可以通过多线程来支持多个客户端的连接,如上图所示。
如果要让 BIO 通信模型 能够同时处理多个客户端请求,就必须使用多线程(主要原因是socket.accept()
、socket.read()
、socket.write()
涉及的三个主要函数都是同步阻塞的),也就是说它在接收到客户端连接请求之后为每个客户端创建一个新的线程进行链路处理,处理完成之后,通过输出流返回应答给客户端,线程销毁。这就是典型的 一请求一应答通信模型 。我们可以设想一下如果这个连接不做任何事情的话就会造成不必要的线程开销,不过可以通过 线程池机制 改善,线程池还可以让线程的创建和回收成本相对较低。使用FixedThreadPool
可以有效的控制了线程的最大数量,保证了系统有限的资源的控制,实现了N(客户端请求数量):M(处理客户端请求的线程数量)的伪异步I/O模型(N 可以远远大于 M),下面一节”伪异步 BIO”中会详细介绍到。
1.2 伪异步IO
为了解决同步阻塞I/O面临的一个链路需要一个线程处理的问题,后来有人对它的线程模型进行了优化一一一后端通过一个线程池来处理多个客户端的请求接入,形成客户端个数M:线程池最大线程数N的比例关系,其中M可以远远大于N.通过线程池可以灵活地调配线程资源,设置线程的最大值,防止由于海量并发接入导致线程耗尽。
采用线程池和任务队列可以实现一种叫做伪异步的 I/O 通信框架,它的模型图如上图所示。当有新的客户端接入时,将客户端的 Socket 封装成一个Task(该任务实现java.lang.Runnable接口)投递到后端的线程池中进行处理,JDK 的线程池维护一个消息队列和 N 个活跃线程,对消息队列中的任务进行处理。由于线程池可以设置消息队列的大小和最大线程数,因此,它的资源占用是可控的,无论多少个客户端并发访问,都不会导致资源的耗尽和宕机。
伪异步I/O通信框架采用了线程池实现,因此避免了为每个请求都创建一个独立线程造成的线程资源耗尽问题。不过因为它的底层仍然是同步阻塞的BIO模型,因此无法从根本上解决问题。
1.3 代码示例
客户端
1 |
|
服务端
1 |
|
1.4 总结
在活动连接数不是特别高(小于单机1000)的情况下,这种模型是比较不错的,可以让每一个连接专注于自己的 I/O 并且编程模型简单,也不用过多考虑系统的过载、限流等问题。线程池本身就是一个天然的漏斗,可以缓冲一些系统处理不了的连接或请求。但是,当面对十万甚至百万级连接的时候,传统的 BIO 模型是无能为力的。因此,我们需要一种更高效的 I/O 处理模型来应对更高的并发量。
2 NIO (New IO)
2.1 NIO简介
NIO是一种同步非阻塞的I/O模型,在Java 1.4 中引入了 NIO 框架,对应 java.nio 包,提供了 Channel , Selector,Buffer等抽象。
被调用者先执行后返回,同步;
调用者在调用后、返回前不等待。非阻塞
NIO中的N可以理解为Non-blocking,不单纯是New。它支持面向缓冲的,基于通道的I/O操作方法。 NIO提供了与传统BIO模型中的 Socket
和 ServerSocket
相对应的 SocketChannel
和 ServerSocketChannel
两种不同的套接字通道实现,两种通道都支持阻塞和非阻塞两种模式。阻塞模式使用就像传统中的支持一样,比较简单,但是性能和可靠性都不好;非阻塞模式正好与之相反。对于低负载、低并发的应用程序,可以使用同步阻塞I/O来提升开发速率和更好的维护性;对于高负载、高并发的(网络)应用,应使用 NIO 的非阻塞模式来开发。
2.2 NIO特性 NIO与IO的区别
非阻塞IO
IO流是阻塞的,NIO流是不阻塞的。
Java NIO使我们可以进行非阻塞IO操作。比如说,单线程中从通道读取数据到buffer,同时可以继续做别的事情,当数据读取到buffer中后,线程再继续处理数据。写数据也是一样的。另外,非阻塞写也是如此。一个线程请求写入一些数据到某通道,但不需要等待它完全写入,这个线程同时可以去做别的事情。
Java IO的各种流是阻塞的。这意味着,当一个线程调用 read()
或 write()
时,该线程被阻塞,直到有一些数据被读取,或数据完全写入。该线程在此期间不能再干任何事情了
缓冲区Buffer
IO 面向流(Stream oriented),而 NIO 面向缓冲区(Buffer oriented)。
Buffer是一个对象,它包含一些要写入或者要读出的数据。在NIO类库中加入Buffer对象,体现了新库与原I/O的一个重要区别。在面向流的I/O中·可以将数据直接写入或者将数据直接读到 Stream 对象中。虽然 Stream 中也有 Buffer 开头的扩展类,但只是流的包装类,还是从流读到缓冲区,而 NIO 却是直接读到 Buffer 中进行操作。
在NIO厍中,所有数据都是用缓冲区处理的。在读取数据时,它是直接读到缓冲区中的; 在写入数据时,写入到缓冲区中。任何时候访问NIO中的数据,都是通过缓冲区进行操作。
最常用的缓冲区是 ByteBuffer,一个 ByteBuffer 提供了一组功能用于操作 byte 数组。除了ByteBuffer,还有其他的一些缓冲区,事实上,每一种Java基本类型(除了Boolean类型)都对应有一种缓冲区。
通道Channel
NIO 通过Channel(通道) 进行读写。
通道是双向的,可读也可写,而流的读写是单向的。无论读写,通道只能和Buffer交互。因为 Buffer,通道可以异步地读写。
选择器Selector
NIO有选择器,而IO没有。
选择器用于使用单个线程处理多个通道。因此,它需要较少的线程来处理这些通道。线程之间的切换对于操作系统来说是昂贵的。 因此,为了提高系统效率选择器是有用的。
2.3 NIO读数据和写数据的方式
通常来说NIO中的所有IO都是从 Channel(通道) 开始的。
- 从通道进行数据读取 :创建一个缓冲区,然后请求通道读取数据。
- 从通道进行数据写入 :创建一个缓冲区,填充数据,并要求通道写入数据。
数据读取和写入操作图示:
2.4 NIO核心组件
NIO 包含下面几个核心的组件:
- Channel(通道)
- Buffer(缓冲区)
- Selector(选择器)
2.5 代码示例
客户端代码不变。
服务端
1 |
|
为什么大家都不愿意用 JDK 原生 NIO 进行开发呢?从上面的代码中大家都可以看出来,是真的难用!除了编程复杂、编程模型难之外,它还有以下让人诟病的问题:
- JDK 的 NIO 底层由 epoll 实现,该实现饱受诟病的空轮询 bug 会导致 cpu 飙升 100%
- 项目庞大之后,自行实现的 NIO 很容易出现各类 bug,维护成本较高,上面这一坨代码我都不能保证没有 bug
Netty 的出现很大程度上改善了 JDK 原生 NIO 所存在的一些让人难以忍受的问题。
3. AIO (Asynchronous I/O)
AIO 也就是 NIO 2。在 Java 7 中引入了 NIO 的改进版 NIO 2,它是异步非阻塞的IO模型。异步 IO 是基于事件和回调机制实现的,也就是应用操作之后会直接返回,不会堵塞在那里,当后台处理完成,操作系统会通知相应的线程进行后续的操作。
AIO 是异步IO的缩写,虽然 NIO 在网络操作中,提供了非阻塞的方法,但是 NIO 的 IO 行为还是同步的。对于 NIO 来说,我们的业务线程是在 IO 操作准备好时,得到通知,接着就由这个线程自行进行 IO 操作,IO操作本身是同步的。(除了 AIO 其他的 IO 类型都是同步的,这一点可以从底层IO线程模型解释,推荐一篇文章:《漫话:如何给女朋友解释什么是Linux的五种IO模型?》 )
查阅网上相关资料,我发现就目前来说 AIO 的应用还不是很广泛,Netty 之前也尝试使用过 AIO,不过又放弃了。